1,196 research outputs found

    Deformation of a renormalization-group equation applied to infinite-order phase transitions

    Get PDF
    By adding a linear term to a renormalization-group equation in a system exhibiting infinite-order phase transitions, asymptotic behavior of running coupling constants is derived in an algebraic manner. A benefit of this method is presented explicitly using several examples.Comment: 6 pages, 5 figures, revtex4, typo corrected, references adde

    Chloride transporter KCC2-dependent neuroprotection depends on the N-terminal protein domain

    Get PDF
    Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl(-) transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases

    Presynaptic mechanisms of neuronal plasticity and their role in epilepsy

    Get PDF
    Synaptic communication requires constant adjustments of pre- and postsynaptic efficacies. In addition to synaptic long term plasticity, the presynaptic machinery underlies homeostatic regulations which prevent out of range transmitter release. In this minireview we will discuss the relevance of selected presynaptic mechanisms to epilepsy including voltage- and ligand-gated ion channels as well as cannabinoid and adenosine receptor signaling

    Electrophysiological signature of homomeric and heteromeric glycine receptor channels

    Get PDF
    Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies provided detailed insights into the mechanisms of channel gating, desensitization and ion permeation. However, most of the work focused only on comparing few isoforms; and amongst studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels including their splice variants in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of channels formed by the {alpha}2 or {alpha}3 subunits change upon receptor desensitization from a linear to an inwardly-rectifying shape, in contrast to their heteromeric counterparts. We demonstrate that inward rectification depends on a single amino acid (A254) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly-rectifying upon desensitization. Thus, the alanine residue A254 determines voltage-dependent rectification upon receptor desensitization and provides a physio-molecular signature of homomeric glycine receptor channels which provides unprecedented opportunities for the identification of these channels at the single cell level

    Transition to Product Service Systems: methodology based on scenarios identification, modelling and evaluation

    Get PDF
    Part 4: Transition Towards Product-Service SystemsInternational audienceThe paper proposes a methodology to support the organisational shift towards product Services Systems. Its backbone is the evaluation of economic impact of such a shift. However, in order to efficiently accommodate organisational changes and include company specificities, other steps are required prior to evaluation. These are context analysis, scenarios identification and modelling. The novelty of the paper lies in (i) including organisational changes in the evaluation and (ii) managing the contextualization to company specificities

    Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons

    Get PDF
    Cultured neurons from bdnf-/- mice display reduced densities of synaptic terminals, although in vivo these deficits are small or absent. Here we aimed at clarifying the local responses to postsynaptic brain-derived neurotrophic factor (BDNF). To this end, solitary enhanced green fluorescent protein (EGFP)-labeled hippocampal neurons from bdnf-/- mice were compared with bdnf-/- neurons after transfection with BDNF, bdnf-/- neurons after transient exposure to exogenous BDNF, and bdnf+/+ neurons in wild-type cultures. Synapse development was evaluated on the basis of presynaptic immunofluorescence and whole-cell patch-clamp recording of miniature postsynaptic currents. It was found that neurons expressing BDNF::EGFP for at least 16 h attracted a larger number of synaptic terminals than BDNF-deficient control neurons. Transfected BDNF formed clusters in the vicinity of glutamatergic terminals and produced a stronger upregulation of synaptic terminal numbers than high levels of ambient BDNF. Glutamatergic and GABAergic synapses reacted differently to postsynaptic BDNF: glutamatergic input increased, whereas GABAergic input decreased. BDNF::EGFP-expressing neurons also differed from BDNF-deficient neurons in their dendrite morphology: they exhibited weaker dendrite elongation and stronger dendrite initiation. The upregulation of glutamatergic synaptic input and the BDNF-induced downregulation of GABAergic synaptic terminal numbers by postsynaptic BDNF depended on tyrosine receptor kinase B activity, as deduced from the blocking effects of K252a. The suppression of dendrite elongation was also prevented by block of tyrosine receptor kinase B but required, in addition, glutamate receptor activity. Dendritic length decreased with the number of glutamatergic contacts. These results illuminate the role of BDNF as a retrograde synaptic regulator of synapse development and the dependence of dendrite elongation on glutamatergic input

    A bright FIT-PNA hybridization probe for the hybridization state specific analysis of a C → U RNA edit via FRET in a binary system

    Get PDF
    Oligonucleotide probes that show enhanced fluorescence upon nucleic acid hybridization enable the detection and visualization of specific mRNA molecules, in vitro and in cellulo. A challenging problem is the analysis of single nucleotide alterations that occur, for example, when cellular mRNA is subject to C → U editing. Given the length required for uniqueness of the targeted segment, the commonly used probes do not provide the level of sequence specificity needed to discriminate single base mismatched hybridization. Herein we introduce a binary probe system based on fluorescence resonance energy transfer (FRET) that distinguishes three possible states i.e. (i) absence of target, (ii) presence of edited (matched) and (iii) unedited (single base mismatched) target. To address the shortcomings of read-out via FRET, we designed donor probes that avoid bleed through into the acceptor channel and nevertheless provide a high intensity of FRET signaling. We show the combined use of thiazole orange (TO) and an oxazolopyridine analogue (JO), linked as base surrogates in modified PNA FIT-probes that serve as FRET donor for a second, near-infrared (NIR)-labeled strand. In absence of target, donor emission is low and FRET cannot occur in lieu of the lacking co-alignment of probes. Hybridization of the TO/JO-PNA FIT-probe with the (unedited RNA) target leads to high brightness of emission at 540 nm. Co-alignment of the NIR-acceptor strand ensues from recognition of edited RNA inducing emission at 690 nm. We show imaging of mRNA in fixed and live cells and discuss the homogeneous detection and intracellular imaging of a single nucleotide mRNA edit used by nature to post-transcriptionally modify the function of the Glycine Receptor (GlyR)

    Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia

    Get PDF
    The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that the local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, while additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pull-down experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease

    Identification of parvalbumin interneurons as cellular substrate of fear memory persistence

    Get PDF
    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR {beta}3L(185L) to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders

    Acute coronary syndrome in patients younger than 30 years--aetiologies, baseline characteristics and long-term clinical outcome.

    Get PDF
    Coronary atherosclerosis begins early in life, but acute coronary syndromes in adults aged <30 years are exceptional. We aimed to investigate the rate of occurrence, clinical and angiographic characteristics, and long-term clinical outcome of acute coronary syndrome (ACS) in young patients who were referred to two Swiss hospitals. From 1994 to 2010, data on all patients with ACS aged <30 years were retrospectively retrieved from our database and the patients were contacted by phone or physician's visit. Baseline, lesion and procedural characteristics, and clinical outcome were compared between patients in whom an underlying atypical aetiology was found (non-ATS group; ATS: atherosclerosis) and patients in whom no such aetiology was detected (ATS group). The clinical endpoint was freedom from any major adverse cardiac event (MACE) during follow-up. A total of 27 young patients with ACS aged <30 years were admitted during the study period. They accounted for 0.05% of all coronary angiograms performed. Mean patient age was 26.8 ± 3.5 years and 22 patients (81%) were men. Current smoking (81%) and dyslipidaemia (59%) were the most frequent risk factors. Typical chest pain (n = 23; 85%) and ST-segment elevation myocardial infarction (STEMI; n = 18 [67%]) were most often found. The ATS group consisted of 17 patients (63%) and the non-ATS group of 10 patients (37%). Hereditary thrombophilia was the most frequently encountered atypical aetiology (n = 4; 15%). At 5 years, mortality and MACE rate were 7% and 19%, respectively. ACS in young patients is an uncommon condition with a variety of possible aetiologies and distinct risk factors. In-hospital and 5-year clinical outcome is satisfactory
    corecore